Msgr. Gray's 25th Anniversary Trivia Night

Round 1:
Mathematics

Mathematics Question 1

A common theorem about right triangles is known in China as the Gougu Theorem. However, you probably know this theorem based on the name of the Greek Mathematician who also developed a proof for it.
What is the name of the theorem?

Mathematics Question 2

The triangle on the right is properly described by two terms.

The first term indicates that the triangle has two sides of equal length.

The second term indicates that one angle is
 90 degrees.
What are the two terms?

Mathematics Question 3

When writing out a transcendental number, the digits go on forever and never repeat. They are not integers (like 2), nor rational numbers (like $\frac{2}{3}$).
Transcendental numbers are irrational, but they are not the solution to an algebraic equation (such as $\sqrt{2}$).
Instead, transcendental numbers can be used in trigonometric and logarithmic functions.
Give any one example of a constant that is a real transcendental number.

Mathematics Question 4

The picture shows a right triangle inside a unit circle. The six trigonometric functions are the quotients of two of the sides of the right triangle, namely

$$
\sin \theta, \cos \theta, \tan \theta, \cot \theta, \sec \theta, \csc \theta
$$

Trig identities express the relationships between the various trig functions. In

$\cos \theta$ particular, the quotient $\frac{\sin \theta}{\cos \theta}$ is equal to which of these six trig functions?

Mathematics Question 5

Let a function, $s(t)$, describe the position of a vehicle as it travels with respect to time.
In calculus, the first derivative of the position function gives the rate of change of the vehicle's position over time: $\frac{d s(t)}{d t}=v(t)$.

- This is known as the velocity function, $v(t)$.

The second derivative of the position function gives the rate of change of the vehicle's velocity over time: $\frac{d^{2} s(t)}{d t^{2}}=a(t)$.
-What is the common name of this function, $a(t)$?

Mathematics Question 6

Computers use binary notation, also called base 2, to represent numbers using the digits 0 and 1.
Computers also use hexadecimal notation (base 16), with the 16 digits composed of the numbers 0 to 9 followed by the "numbers" A to F.

Base 2	Base $\mathbf{1 0}$
10	2
11	3
100	4
111	7
1000	8
Base 16	Base $\mathbf{1 0}$
FF	$?$

In base 10 notation, What number is indicated by the hexadecimal number FF?

Mathematics Question 7

- Before it became the name of an Internet search engine, the extremely large number 1 followed by 100 zeros (i.e. 10^{100}) was called by what name?

Mathematics Question 8

- Beyond real numbers, mathematicians also work with imaginary numbers, represented by i.
- While i is an imaginary number, i^{2} is a real number.

What is the value of i^{2} ?

Mathematics Question 9

In geometry, the set of points that are a fixed distance from a single focus point is called a circle.
What is the name of the shape formed by the points such that the sum of its distances from two foci points is constant?

Mathematics Question 10

- In the $17^{\text {th }}$ Century, this French philosopher and mathematician revolutionized mathematics by combining Euclidian geometry and algebra to develop this coordinate system represented in two dimensions by an x-axis to describe the horizontal position and the y-axis to describe the vertical position of a point.
What is the mathematician whose name was also used to describe this coordinate system?

Mathematics Trivia Answers

Mathematics Answer 1

The Gougu Theorem demonstrates that the sum of the square of the sides of a right triangle equals the square of the hypotenuse: $a^{2}+b^{2}=c^{2}$
This theorem was also proven by Pythagoras and is known as the Pythagorean Theorem.

Mathematics Answer 2

A triangle with two equal sides is an isosceles triangle.

A triangle with a 90-degree angle is a right triangle.

Isosceles right triangle.

Mathematics Answer 3

Transcendental numbers include the following acceptable answers:
π
$\sin 1$ computed in radians
\boldsymbol{e}
ln2
Other similar variations on these numbers are also transcendental.

Mathematics Answer 4

$\frac{\sin \theta}{\cos \theta}$ is the quotient dividing the "opposite" side of the triangle by the "adjacent" side. This is also called the tangent.
$\tan \theta$

Mathematics Answer 5

$s(t)$ is the position function.
$\frac{d s(t)}{d t}=v(t)$ or the velocity function.
$\frac{d^{2} s(t)}{d t^{2}}=a(t)$ or the acceleration function.

Mathematics Answer 6

- In base 10, the number just before 10 is 9, and the number just before 100 is 99 , etc.

Base $\mathbf{1 6}$	Base $\mathbf{1 0}$
$\mathbf{1}$	1
A	10

In hexadecimal notation, the digits are 12 3456789 ABCDEF.

The number just before 10 is F, and the number just before 100 is FF.
Therefore FF is the number before 256 in

F	15
10	16
FF	255
100	256
FFF	4095
1000	4096

Mathematics Answer 7

The number $\mathbf{1 0} \mathbf{0}^{\mathbf{1 0 0}}$ is also called a Google

Mathematics Answer 8

The imaginary number $i=\sqrt{-1}$
Therefore, $i^{2}=(\sqrt{-1})^{2}=-1$

Mathematics Answer 9

A shape composed of the points such that the sum of its distances from two foci is constant is called an ellipse.

Mathematics Answer 10

The $17^{\text {th }}$ Century French philosopher and mathematician René Descartes not only announced, "I think, therefore I am," but he also developed the Cartesian coordinate plane.

